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Abstract Biomembranes consist of a lipid bi-layer into which proteins are embedded to
fulfill numerous tasks in localized regions of the membrane. Often, the proteins have to reach
these regions by simple diffusion. Motivated by the observation that IP3 receptor channels
(IP3R) form clusters on the surface of the endoplasmic reticulum (ER) during ATP-induced
calcium release, the reaction rate of small diffusing molecules on a cylindrical membrane is
calculated based on the Smoluchowski approach. In this way, the cylindrical topology of the
tubular ER is explicitly taken into account. The problem can be reduced to the solution of
the diffusion equation on a finite cylindrical surface containing a small absorbing hole. The
solution is constructed by matching appropriate ‘inner’ and ‘outer’ asymptotic expansions.
The asymptotic results are compared with those from numerical simulations and excellent
agreement is obtained. For realistic parameter sets, we find reaction rates in the range of
experimentally measured clustering rates of IP3R. This supports the idea that clusters are
formed by a purely diffusion limited process.
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1 Introduction

The endoplasmic reticulum (ER) is a nucleus associated organelle with a tubular network
structure found in nearly all eucariotic cells. It is the site where proteins are translated, folded
and transported. In addition, the ER is one of the main intracellular stores for calcium ions.
Ca2+ is a second messenger translating extracellular stimuli into intracellular responses, e.g.
in the form of homogeneous oscillations of the calcium concentration. Different stimuli are
coded in the shape, amplitude and, or, frequency of the oscillations [4, 16]. Ca2+ is released
through IP3R (inositol 1,4,5-trisphosphate) receptor channels, which are integral membrane
proteins of the ER. The open probability of IP3R depends on the Ca2+ concentration on the
outside of the storage compartment from which Ca2+ is released. Therefore, the channels
communicate by Ca2+ diffusion outside the ER. The strength of coupling depends on chan-
nel distance. Recently, Tateishi et al. [22] reported that clustering of IP3R receptor channels
on the ER membrane can be (reversibly) induced by IP3-generating agents such as extracel-
lular ATP. In particular, they argued that clustering is induced by the conformational change
of the IP3R protein to its open state.

Clustering of membrane receptors is a common phenomenon that has received consider-
able attention during the last decades due to its potential relevance for signal transduction
processes [1, 2, 7, 9, 10, 20]. Berg and Purcell [1] showed that cells can optimally sense
their environment for signaling molecules if the corresponding receptor proteins are evenly
distributed over the cell surface while the receptor size should be small compared to the
distance between receptors. In particular, receptor clustering was shown to reduce the sensi-
tivity to external stimuli. In contrast, Gopalakrishnan et al. [10] argued that receptor cluster-
ing can significantly reduce the effective dissociation rate of ligand molecules by increasing
the probability of immediate rebinding. As a result, the duration of interaction between the
signaling and the receptor molecule is prolonged which might affect the generation of sec-
ondary signals.

The configuration of channels and clusters is of outstanding importance for intracellu-
lar Ca2+ release through IP3R receptor channels ([4] and references therein). The specific
configuration of channels within a cluster affects the properties of elemental release events
which are the spontaneous opening of channels of a single cluster (called puffs). The av-
erage cluster distance is an important determinant for wave velocities, oscillation periods
and almost all other spatio-temporal phenomena [4]. Tateishi et al. [22] have observed that
clustering is a dynamic process where single receptor molecules, while diffusing along the
membrane, can stick together upon encounter and thereby create 2-, 3- and eventually n-size
clusters. On the other hand, as soon as the IP3 producing agonist ATP is removed from the
extracellular solution, clusters begin to break up and finally disappear. As yet, the dynamic
process of clustering of IP3R channels has not been taken into account in the modeling of
calcium release events from the ER. As a first step towards a more realistic modeling we
calculate the reaction rate of small diffusing molecules (IP3R) on the membrane of the ER
by explicitly taking into account that the tubular ER is a finite object and exhibits cylindrical
topology.

The classical approach of calculating reaction rates dates back to Smoluchowksi [21]. He
considered an ensemble of particles each of which performs a random walk in infinite space.
It is assumed that as soon as two particles approach each other a reaction takes place such
that the diffusion is the overall reaction rate limiting process. The diffusion limited reaction
rate for spherical molecules in infinite space can be calculated as follows: A single particle
of radius R is placed at the origin. In the continuum limit the random walk of the remaining
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molecules is described by the diffusion equation

∂tc = D�c

subject to the boundary conditions

c(R) = 0, lim
r→∞ c(r) = c0,

where c is the concentration of the remaining particles, D is their diffusion coefficient and
c0 is the initial concentration, which is kept fixed at spatial infinity. The latter condition
ensures that the reaction rate becomes stationary as t → ∞. The absorbing boundary condi-
tion accounts for the fact that the particle located at the origin acts as a perfect sink for the
remaining ones. The reaction rate is given by the integrated flux to the absorbing particle

k(t) = D

∫
S

∇c|r=R · ndS, (1)

where n is the outward pointing normal to the surface S of the particle. This reaction rate
is a measure of the number of particles that approach the particle located at the origin per
second.

In infinite three-dimensional space the reaction rate is given by [21]

k(t) = 4πDRc0

(
1 + R√

πDt

)
,

so that in the long-time limit the stationary reaction rate k = 4πDRc0 is approached. In
contrast, in infinite two-dimensional space the reaction rate is independent of the radius, and
is given to leading order by [19]

k(t) ∼ 4πDc0

ln t
,

which slowly decays to zero as t → ∞. This reflects the different recurrence properties of
random walks in two- and three-dimensional space. While in two dimensions the probability
of capturing a particle that starts a random walk at some distance r > R is equal to unity,
there is a finite probability in three dimensions that the particle escapes to infinity and is
never captured [19].

In this paper we calculate the reaction rate of small diffusing molecules on a finite two-
dimensional domain with cylindrical topology. Using an eigenfunction expansion for the
solution of the diffusion equation, we show that the reaction rate decays for long times as a
single exponential

k(t) = Ae−λt (2)

where the decay rate λ has an asymptotic expansion in powers of the function ν =
1/ log(L/δ) given by

λ = 2πDν

|Ω0| (1 − 2πνR1(0;0) +O(ν2)). (3)

Here |Ω0| = 4πLR is the area of the cylindrical surface, 2L and 2πR are its length and its
circumference, respectively. Also, D is the diffusion coefficient of a molecule, while δ � L

denotes its radius. The first order correction contains the function R1(0;0). It only depends
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on the aspect ratio L/R of the cylindrical surface and thereby accounts for its particular
geometry. The constant A appearing in (2) also has an asymptotic expansion. To second
order it is simply given by A = c0|Ω0|λ where c0 is the initial concentration of particles.
The expansion for λ in (3) actually comprises infinitely many terms in powers of ν (cf.
Sect. 3).

In Sect. 2 we formulate our problem precisely and show that the reaction rate can be
obtained from a solution of the diffusion equation on a rectangular domain with a small hole
at the origin augmented by appropriate boundary conditions. The hole renders the problem
nontrivial and prevents us from finding an exact analytical solution. However, the small
hole acts as a singular perturbation to the rectangular domain causing large but localized
changes in the solution as compared to the smooth solution of the unperturbed problem.
Thus, the method of asymptotic matching [13, 15, 24, 25] is used in Sect. 3 to construct
an asymptotic solution of the diffusion equation from which approximate expressions for A

and λ in (2) are derived. For this purpose, appropriate asymptotic expansions near the small
absorbing hole (inner region) and far away from it (outer region) have to be matched. The
higher order correction terms involve the function R1(0;0) which is the regular part of a
certain Green’s function for the rectangular domain. The regular part depends on the aspect
ratio between the length and the radius of the cylindrical surface and thus, accounts for the
particular geometry of the membrane. In the case of large aspect ratios, we also derive a
‘non-perturbative’ expression for λ in (3) which contains the logarithmic function ν in a
non-polynomial way. In Sect. 4 the various asymptotic approximations are compared with
corresponding results obtained from full numerical simulations. Finally, in Sect. 5 we relate
our results to recent experimental observations and discuss further applications.

2 Formulation of the Problem

The ER consists of many interconnected cylindrical parts forming a tubular network. The
length of a single tube is up to 5 µm while its radius varies between 0.1 and 0.5 µm. The size
of IP3R channels is about 18–30 nm. We imagine that the receptor molecules intersect the
membrane surface transversely such that the intersection is a circle of radius δ (cf. Fig. 1).
In the following, the extension of the receptor molecules beyond the membrane surface is
neglected leading to the reduced problem of small diffusing disks on a finite cylindrical
surface. In addition, we neglect the extrinsic curvature of the membrane since the size of

Fig. 1 Color online; Mapping the diffusion of transmembrane proteins on a cylindrical surface to diffusing
disks on a rectangular domain with periodic boundary conditions at y = ±πR (dashed line). One channel
is placed at the origin corresponding to the hole Dδ . The others are treated in the continuum limit by a
concentration field c(x, t)
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a receptor molecule is much smaller than the length and the circumference of the cylinder.
Consequently, the membrane is assumed to be locally flat. However, the cylindrical topology
is accounted for by periodic boundary conditions along the circumference of the cylinder. At
the bottom and top of the cylindrical surface we impose no-flux boundary conditions which
corresponds to the assumption that the net flow of receptor molecules across the boundaries
of an arbitrarily chosen tube of the ER meshwork is zero.

In summary, a tube of the ER membrane is modeled as a two-dimensional finite cylindri-
cal surface Ωδ of length 2L and circumference 2πR which contains a small hole of radius
δ corresponding to a (fixed) receptor molecule located at the origin (cf. Fig. 1), i.e.

Ωδ = Ω0 \ Dδ,

with

Ω0 := {(x, y) : |x| ≤ L, |y| ≤ πR}, Dδ := {(x, y) : x2 + y2 ≤ δ2}.
We wish to solve the diffusion equation

∂tc(x, t) = D�c(x, t), (x, t) ∈ Ωδ × R+, (4)

with the following boundary conditions corresponding to no-flux and periodic boundary
conditions in the x and y directions, respectively,

∂xc(±L,y, t) = 0,

c(x,πR, t) = c(x,−πR, t), ∂yc(x,πR, t) = ∂yc(x,−πR, t),
(5)

together with an absorbing boundary condition on the small circle Cδ ≡ ∂Dδ given by

c(x, t) = 0, x ∈ Cδ. (6)

The initial condition is

c(x,0) = c0, x ∈ Ωδ. (7)

In the limit δ → 0, the initial-boundary value problem (IBVP) described by (4–7), is sin-
gularly perturbed. This can be seen as follows: If δ = 0, the unique solution to the problem
is c(x, t) ≡ c0, since there are no absorbing boundaries in Ω0 and we have imposed a homo-
geneous initial condition. However, for an arbitrarily small absorbing boundary (0 < δ � 1)
the solution of the IBVP will develop a boundary layer close to the absorbing circle to ac-
count for the rapid transition between the boundary value zero at Cδ and a value that is
of O(1) in the outer region away from the hole for small times, but that eventually decays
to zero as t → ∞. These ideas are made more precise in the next section using a formal
boundary layer theory.

3 Solution Using Asymptotic Matching

We seek a solution of (4) as an eigenfunction expansion of the form

c(x, t; δ) =
∞∑

j=0

dδ
j ϕ

δ
j (x)e

−λδ
j
Dt

, λδ
j ≥ 0, (8)



382 J Stat Phys (2007) 129: 377–405

where the eigenfunctions ϕδ
j are solutions of the Helmholtz equation

�ϕδ
j + λδ

jϕ
δ
j = 0, x ∈ Ωδ, (9)

satisfying the boundary conditions in (5) and (6). The corresponding eigenfunctions are
orthonormalized as ∫

Ωδ

ϕδ
jϕ

δ
kdx = δjk, (10)

and the coefficients dδ
j are given by

dδ
j = c0

∫
Ωδ

ϕδ
j dx.

In terms of the eigenfunction representation (8), the problem of solving the diffusion
equation is reduced to solving the eigenvalue problem (9) in the singularly perturbed do-
main Ωδ . Since this problem cannot be solved exactly by standard methods, we will solve it
asymptotically in the small hole limit δ � 1.

The long-time behavior of the solution in (8) is described by the eigenmode with the
smallest eigenvalue, i.e. by the first eigenpair (ϕδ

0, λ
δ
0). Thus, for t � 1, we can approximate

the solution as

c(x, t; δ) ∼ dδ
0ϕ

δ
0(x)e−λδ

0Dt , 0 < δ � 1. (11)

To find an appropriate outer expansion, we first study the unperturbed problem correspond-
ing to δ = 0 in (9). In this case, the well-known boundary value problem

�ψj = −μjψj , x ∈ Ω0;
∫

Ω0

ψiψjdx = δij

is obtained for the rectangular domain without a hole subject to the boundary conditions
of (5). The eigenvalues μj ≥ 0 are ordered as 0 = μ0 < μ1 ≤ μ2 ≤ · · · , and the first normal-
ized eigenpair (μ0,ψ0) is

μ0 = 0, ψ0 = 1

|Ω0| 1
2

, (12)

where |Ω0| denotes the area of Ω0.
For small nonzero δ, we expect for each fixed j ≥ 0 that

λδ
j → μj as δ → 0.

In addition, the eigenfunctions of (9) will develop a boundary layer close to the absorbing
circle Cδ where they change rapidly from the value zero at Cδ to a value of O(1) far away
from the hole. Consequently, Ωδ may be decomposed into an ‘inner’ region (|x| ∼ O(δ))
close to the absorbing boundary and an ‘outer’ region (|x| � O(δ)) where the eigenfunc-
tions deviate only slightly from those of the corresponding problem in the unperturbed do-
main Ω0, i.e.

|ϕδ
j − ψj | � 1, |x| � O(δ).

In each of the two regions, we shall give an appropriate asymptotic expansion of the
dominant eigenfunction ϕδ

0 which yields a series of simpler problems that can be solved.
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In particular, the eigenfunction in the outer region will satisfy the reflecting and periodic
boundary conditions, while that of the inner expansion must vanish at the absorbing circle.
Asymptotic matching of the expansions fixes the singularity type of the outer solution near
the origin, and determines the correction terms to the unperturbed eigenvalue μ0 = 0.

3.1 Asymptotic Expansion in the Outer Region

For eigenvalue problems in a two-dimensional domain containing small circular holes of a
common radius δ � 1, and with a homogeneous Dirichlet condition imposed on the bound-
ary of each hole, it was shown in Refs. [15, 25] that the principal eigenvalue has an infinite
logarithmic expansion of the form

λδ
0 = νΛ1 + ν2Λ2 + ν3Λ3 + . . . , ν ≡ − 1

log δ
. (13)

In Ref. [25] a hybrid numerical method was formulated to effectively sum this infinite loga-
rithmic expansion. Related steady-state diffusion problems with small holes were considered
in Ref. [24]. Our first goal is to derive analytical formulae for Λ1, Λ2 and Λ3 to obtain an
explicit three-term expansion for λδ

0. In Sect. 3.5, we will also derive an infinite logarithmic
expansion containing arbitrary high powers of the logarithmic gauge function ν(δ). Both
expansions will be compared with results from numerical simulations in Sect. 4.

The corresponding eigenfunction is constructed using the method of matched asymptotic
expansions. In the outer region |x| � O(δ) we expand the principal eigenfunction as

ϕδ
0,out (x) = |Ω0|− 1

2 + νΦ1(x) + ν2Φ2(x) + ν3Φ3(x) + · · · (14)

which reduces to the constant solution of the unperturbed problem (12) in the limit δ → 0.
Upon substituting (13) and (14) into (9), and equating powers of ν, we obtain that Φ1 satis-
fies

�Φ1 = −Λ1|Ω0|− 1
2 , x ∈ Ω0 \ {0};

∫
Ω0

Φ1dx = 0. (15)

The equation for Φ2 reads

�Φ2 = −Λ2|Ω0|− 1
2 − Λ1Φ1, x ∈ Ω0 \ {0},∫

Ω0

(Φ2
1 + 2|Ω0|− 1

2 Φ2)dx = 0.
(16)

Finally, at third order we obtain that Φ3 satisfies

�Φ3 = −Λ3|Ω0|− 1
2 − Λ1Φ2 − Λ2Φ1, x ∈ Ω0 \ {0},∫

Ω0

(2Φ1Φ2 + 2|Ω0|− 1
2 Φ3)dx = 0.

(17)

The integral constraints in (15–17) are derived from the normalization condition (10)
upon using the expansion in (14). Each Φj must satisfy the boundary conditions in (5). In
addition, we will show below that upon matching to an appropriate inner expansion each Φj

must have a certain singularity behavior as x → 0. Therefore, the origin has to be omitted in
the definition of (15–17).
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3.2 Asymptotic Expansion in the Inner Region

In the region near the small hole we introduce a local variable y = δ−1x to obtain the scaled
eigenvalue equation

�yϕ
δ
0,in = −δ2λδ

0ϕ
δ
0,in. (18)

An appropriate expansion of the inner solution should vanish for fixed y in the limit δ → 0,
and therefore it has the form

ϕδ
0,in = νV1(y) + ν2V2(y) + ν3V3(y) + · · · . (19)

Note that the right-hand side of the scaled eigenvalue equation (18) is O(δ2ν2) whereas the
left-hand side contains powers of the logarithmic gauge function ν(δ) = −1/ log δ. Now,
since δ2ν2 = o(νk) for k ≥ 1, each of the functions Vi(y) is a solution of Laplace’s equation
�yVi = 0, for |y| ≥ 1, with Vi = 0 on |y| = 1, which accounts for the absorbing boundary
condition on Cδ . The solution is simply

Vi = Ai log |y|, i ≥ 1,

where the Ai , for i ≥ 1, will be found from matching with the outer solution.

3.3 Matching Inner and Outer Expansions

Rewriting the inner expansion (19) in outer variables, and recalling that ν = −1/ log δ, we
obtain the far-field expansion of the inner solution as

ϕδ
0,in(x) = A1 + ν(A1 log |x| + A2) + ν2(A2 log |x| + A3)

+ ν3(A3 log |x| + A4) + · · · , (20)

which must match the near-field behavior (as x → 0) of the outer solution given in (14).
This determines the constants Aj as

A1 = |Ω0|− 1
2 ; Aj+1 = lim

x→0
(Φj (x) − Aj log |x|), j = 1,2. (21)

In addition, the matching condition yields that the functions Φj for j ≥ 1 have logarithmic
singularities near the origin

Φj ∼ Aj log |x|, as x → 0, j = 1,2,3. (22)

Since the free space Green’s function GF = −(2π)−1 log |x| satisfies �GF = −δ(x) for
x ∈ R

2, it readily follows that one may add in (15–17) source terms of the form 2πAjδ(x)

to account for this singularity behavior of the functions Φj for j ≥ 1. As a result, we get

�Φ1 = −Λ1|Ω0|− 1
2 + 2π |Ω0|− 1

2 δ(x), x ∈ Ω0, (23)

�Φ2 = −Λ2|Ω0|− 1
2 − Λ1Φ1 + 2πA2δ(x), x ∈ Ω0, (24)

�Φ3 = −Λ3|Ω0|− 1
2 − Λ2Φ1 − Λ1Φ2 + 2πA3δ(x), x ∈ Ω0. (25)
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This shows that the small absorbing hole acts as a point source centered at the origin for the
outer solution, with the strength of the source determined by the coefficients Aj for j ≥ 1
of the inner expansion.

The eigenvalue corrections Λi in (23–25) are fixed by the divergence theorem in con-
junction with the boundary condition in (5) on ∂Ω0, e.g.

∫
Ω0

�Φ1dx =
∫

∂Ω0

∇Φ1 · ndS =
∫

Ω0

(
− Λ1

|Ω0| 1
2

+ 2π

|Ω0| 1
2

δ(x)

)
dx = 0.

This determines Λ1 as

Λ1 = 2π

|Ω0| . (26)

In a similar way, Λ2 and Λ3 are obtained from (24) and (25), respectively, as

Λ2 = 2π

|Ω0| 1
2

A2, (27)

Λ3 = 2π

|Ω0| 1
2

A3 − Λ1

|Ω0| 1
2

∫
Ω0

Φ2dx. (28)

In the following, we wish to derive explicit expressions for the two constants A2 and A3.
For further calculations, it is convenient to introduce the Neumann Green’s function G1(x;0)

through the rescaling

Φ1 = −2π |Ω0|−1/2G1(x;0), (29)

by which (23) takes the form

�G1(x;0) = 1

|Ω0| − δ(x), x ∈ Ω0;
∫

Ω0

G1(x;0)dx = 0, (30)

and G1(x;0) satisfies the boundary conditions of (5). In terms of G1, we introduce the
regular part R1(x;0) defined by

G1(x;0) = − 1

2π
log |x| + R1(x;0). (31)

Upon using (29), we can express the second constant A2 defined in (21) in terms of R1(0;0)

as

A2 = −2π |Ω0|− 1
2 lim

x→0

[
G1(x;0) + 1

2π
log |x|

]

= −2π |Ω0|− 1
2 R1(0;0). (32)

To obtain the constant A3 we need an explicit representation of the function Φ2. Upon
substituting (26), (27), and (29), into (24), the equation for Φ2 becomes

�Φ2 = −2πA2

(
1

|Ω0| − δ(x)

)
+ 4π2

|Ω0|3/2
G1(x;0). (33)
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The solution of (33) fulfilling the boundary condition in (5) is

Φ2 = −2πA2G1(x;0) − 4π2

|Ω0|3/2
(B2 + G2(x;0)), (34)

where G2(x;0) satisfies

�G2 = −G1, x ∈ Ω0;
∫

Ω0

G2dx = 0, (35)

subject to the boundary conditions of (5). The constant B2 in (34) is obtained from the
normalization condition in (16). Upon using (29) and (34), this condition yields

B2 = 1

2

∫
Ω0

[G1(x;0)]2dx. (36)

An alternative expression for B2 can be derived by using Green’s second identity for G1 and
G2 together with the boundary condition (5) for G1 and G2. We obtain,

0 =
∫

Ω0

(G1�G2 − G2�G1)dx = −
∫

Ω0

G2
1dx −

∫
Ω0

G2

(
1

|Ω0| − δ(x)

)
dx.

Since
∫

Ω0
G2dx = 0, we find that

B2 = 1

2
G2(0;0). (37)

According to (21), the constant A3 is associated with the regular part of the function Φ2.
Thus, we expand Φ2 in (34) as x → 0 using the singularity behavior of G1 in (31). This
yields that Φ2 ∼ A2 log |x| + A3, where

A3 = −2πA2R1(0;0) − 4π2

|Ω0|3/2
(B2 + G2(0;0)). (38)

Collecting everything together, we substitute (26), (34), and (38), into (28) to obtain

Λ3 = 2π

|Ω0|1/2

(
−2πA2R1(0;0) − 4π2

|Ω0|3/2
G2(0;0)

)
. (39)

This result is, naturally, independent of the constant B2 that normalizes Φ2. Finally, we
replace A2 by the expression in (32) and get

Λ3 = 8π3

|Ω0|
(

[R1(0;0)]2 − G2(0;0)

|Ω0|
)

. (40)

In summary, we have derived the following three-term expansion for λδ
0

λδ
0 ∼ 2πν

|Ω0| − 4π2ν2

|Ω0| R1(0;0) + 8π3ν3

|Ω0|
(

[R1(0;0)]2 − G2(0;0)

|Ω0|
)

. (41)

Here ν = −1/ log δ, where δ � 1 is the (dimensionless) radius of the small absorbing circle
Cδ , and |Ω0| = 4πLR is the area of the cylindrical surface. The regular part R1(0;0) is
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obtained from the solution to (30) and (31) while the constant G2(0;0) is obtained from the
solution to (35). The outer asymptotic expansion of the first eigenfunction ϕδ

0 , with an error
of O(ν3), is given by

ϕδ
0,out (x) ∼ 1

|Ω0| 1
2

− 2πν

|Ω0| 1
2

G1(x;0)

+ 4π2ν2

|Ω0|1/2

(
G1(x;0)R1(0;0) − 1

|Ω0|
[
G2(x;0) + G2(0;0)

2

])
. (42)

The corresponding inner asymptotic expansion

ϕδ
0,in(y) ∼

(
ν

|Ω0| 1
2

− 2πν2R1(0;0)

|Ω0|1/2

)
log |y|

+ 4π2ν3

|Ω0|1/2

(
[R1(0;0)]2 − 3

2|Ω0|G2(0;0)

)
log |y|, (43)

where |y| = δ−1|x| = O(1), is correct to O(ν3) terms.

3.4 Reaction Rate

The reaction rate can now be calculated using the inner expansion. We introduce polar co-
ordinates (ρ = |y| and θ ) and obtain from (1), (11), and (43), that

k(t) = Ddδ
0e

−λδ
0Dt

∫ 2π

0

(
ρ

d

dρ
ϕδ

0,in(ρ)

)∣∣∣∣
ρ=1

dθ

∼ 2πDdδ
0e

−λδ
0Dtν

(
1

|Ω0|1/2
+ νA2 + ν2A3

)
. (44)

The constants A2 and A3 are given in (32) and (38), respectively. The coefficient dδ
0 in (44)

can be estimated as follows:

dδ
0

c0
=

∫
Ωδ

ϕδ
0dx =

∫
Ωδ

ψ0dx +
∫

Ωδ

(ϕδ
0 − ψ0)dx,

=
∫

Ω0

ψ0dx −
∫

Ω0\Ωδ

ψ0dx +
∫

Ω0

(ϕδ
0 − ψ0)dx −

∫
Ω0\Ωδ

(ϕδ
0 − ψ0)dx,

= |Ω0|1/2 + ν

∫
Ω0

Φ1dx + ν2
∫

Ω0

Φ2dx +O(δ2).

Here, we used the outer expansion (14) as well as the facts that both ψ0 and ϕδ
0 are bounded

from above in the inner region, i.e.

|ψ0| ≤ K1, |ϕδ
0| ≤ K2, |x| ∼ O(δ),

so that the integrals over the region Ω0 \ Ωδ near the hole are O(δ2). Next, we recall from
(15) that

∫
Ω0

Φ1dx = 0. Then, from (34) and (37), we calculate

∫
Ω0

Φ2dx = − 2π2

|Ω0|1/2
G2(0;0), (45)
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which shows that

dδ
0 ∼ c0|Ω0|1/2

(
1 − 2π2ν2

|Ω0| G2(0;0)

)
. (46)

Finally, upon substituting (32), (38), and (46), into (44), we obtain the following main result
for the asymptotic estimate of the reaction rate:

k(t) ∼ c0D|Ω0|λδ
0e

−λδ
0Dt

(
1 − 4π2ν2

|Ω0| G2(0;0)

)
. (47)

Here λδ
0, as given in (41), is accurate up to and including terms of order O(ν3). Therefore,

the magnitude of the reaction rate in (47) is correct up to and including terms of order O(ν3).

3.5 Infinite Logarithmic Expansion

In Sect. 4 we will show that the reaction rate (47) derived from the three-term expansion
of the previous section exhibits substantial deviations from the results of the full numerical
simulations in the case of large aspect ratios L/R � 1. For this purpose, we shall now
show how to derive all of the logarithmic correction terms to the unperturbed eigenvalue
following the approach in [25]. As a result, a representation of the reaction rate is obtained
which compares extremely well with numerical simulations even in the case of very large
aspect ratios such as L/R = 80.

An infinite logarithmic expansion for λδ
0 has the form

λδ
0 = λ∗

0(ν) + o(μ), ν ≡ − 1

log δ
, (48)

where μ � νk for any integer k ≥ 1. To find an appropriate expansion of the inner solution
near the hole, we, introduce the local variable y = δ−1x. Since the right-hand side of the
scaled eigenvalue equation (18) is O(δ2ν2), which is asymptotically smaller than any power
of ν, we will seek an infinite logarithmic expansion in the form

ϕδ
0,in =

∞∑
i=1

νiVi(y).

Each Vi for i ≥ 1 is a solution of Laplace’s equation for |y| ≥ 1 with Vi = 0 on |y| = 1. The
solution to this boundary value problem is simply given by Vi = Ai log |y|. Therefore, we
can write the inner solution compactly as

v(y, δ) = A(ν)νVc(y) + · · · , (49)

where the function A(ν) is to be found, and Vc(y) = log |y| is the solution of �Vc = 0 with
Vc = 0 on |y| = 1. Comparing (49) with the three-term expansion of the inner solution (43),
we expect that A(ν) ∼ O(1) as δ → 0. The far-field behavior of this inner solution, written
in terms of x, is

v(y, δ) ∼ A(ν)ν log |x| + A(ν). (50)

To calculate λ∗
0(ν) we have to match this far-field behavior with the near-field behavior of

an appropriate expansion in the outer region away from the hole, which is taken in the form

ϕδ
0 = ϕ∗

0 (x, ν) + o(μ), (51)
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where μ � νk for any integer k ≥ 1. Substituting (48) and (51) into (9) shows that ϕ∗
0

satisfies

�ϕ∗
0 + λ∗

0ϕ
∗
0 = 0, x ∈ Ω0 \ {0},

ϕ∗
0 ∼ A(ν)ν log |x| + A(ν), x → 0,∫

Ω0

(ϕ∗
0 )

2dx = 1.

(52)

Proceeding along similar lines as in Sect. 3, we introduce the Green’s function Gλ∗
0
(x;0)

for the Helmholtz operator, and its regular part Rλ∗
0
(x;0), satisfying

�Gλ∗
0
+ λ∗

0Gλ∗
0
= −δ(x), x ∈ Ω0, (53)

Gλ∗
0
(x;0) = − 1

2π
log |x| + Rλ∗

0
(x;0), (54)

together with the boundary conditions of (5). In terms of this Green’s function, ϕ∗
0 (x, ν) is

given by

ϕ∗
0 (x, ν) = −2πA(ν)νGλ∗

0
(x;0). (55)

By using (54), we expand ϕ∗
0 as x → 0 to obtain

ϕ∗
0 (x, ν) ∼ A(ν)ν log |x| − 2πA(ν)νRλ∗

0
(0;0), x → 0, (56)

which must be compared with the required singularity behavior of ϕ∗
0 in (52) arising from

the matching condition. As a result, we obtain a transcendental equation for λ∗
0(ν) given by

Rλ∗
0
(0;0) = − 1

2πν
, ν = − 1

log δ
. (57)

Finally, the amplitude A(ν) is obtained from the normalization condition

4π2A2(ν)ν2
∫

Ω0

[Gλ∗
0
(x;0)]2dx = 1. (58)

The solution of the Helmholtz equation (53) can be obtained in a similar way as shown
in Appendix 1 for the Green’s function G1 satisfying (30). The result is

Gλ∗
0
(x;0) = − 1

|Ω0|λ∗
0

+ 2

|Ω0|

( ∞∑
m=1

cos(mπx)

π2m2 − λ∗
0

+
∞∑

n=1

cos( nL
R

y)

( nL
R

)2 − λ∗
0

)

+ 2

|Ω0|

( ∞∑
m,n=1

2 cos(mπx) cos( nL
R

y)

(mπ)2 + ( nL
R

)2 − λ∗
0

)
. (59)

Since we are interested in the case when λ∗
0 only slightly deviates from the unperturbed

eigenvalue μ0 = 0, the Helmholtz Green’s function can be expanded for λ∗
0 � 1 as

Gλ∗
0
(x;0) = − 1

λ∗
0|Ω0| + G1(x;0) + λ∗

0G2(x;0) +O([λ∗
0]2). (60)

Upon substituting this expression into (53) and (54) we see that G1 and G2 satisfy (30) and
(35), respectively. Thus, they are precisely the same functions that appear in the three-term



390 J Stat Phys (2007) 129: 377–405

expansion of the outer solution (42). A similar expansion of the transcendental equation (57)
for λ∗

0 yields

Rλ∗
0
(0;0) = − 1

λ∗
0|Ω0| + R1(0;0) + λ∗

0G2(0;0) +O([λ∗
0]2) = − 1

2πν
. (61)

Neglecting terms of O([λ∗
0]2) and higher, we obtain a quadratic equation for λ∗

0, the relevant
solution of which is given by

λ∗
0 = 2πνR1(0;0) + 1

4πνG2(0;0)

(√
1 + 1

G2(0;0)|Ω0|
(

4πνG2(0;0)

2πνR1(0;0) + 1

)2

− 1

)
. (62)

The small argument expansion of the square root up to second order yields

λ∗
0 ≈ 2πν

|Ω0|
1

1 + 2πνR1(0;0)
−

(
2π

|Ω0|
)2

ν3 2πG2(0;0)

(1 + 2πνR1(0;0))3
. (63)

This expression can, again, be expanded provided that |2πνR1(0;0)| � 1. A straightforward
calculation shows that the three-term expansion in (63) precisely coincides with the three-
term expansion appearing in (41) obtained earlier.

The reaction rate can be calculated in a similar way as in (44) using the inner expansion
from (49). We obtain

k∗(t) = Ddδ
0e

−λ∗
0Dt

∫ 2π

0

(
ρ

d

dρ
v(ρ, δ)

)∣∣∣∣
ρ=1

dθ

∼ 2πDdδ
0e

−λ∗
0DtνA(ν), (64)

where dδ
0 is given by

dδ
0 ∼ c0

∫
Ω0

φ∗
0 (x, ν)dx = −2πνA(ν)c0

∫
Ω0

Gλ∗
0
(x;0)dx,

∼ −2πνA(ν)c0

∫
Ω0

(
− 1

|Ω0|λ∗
0

+ G1(x;0) + λ∗
0G2(x;0)

)
dx,

= 2πνA(ν)c0

λ∗
0

.

Here, we have used (55) and (60) together with
∫

Ω0
Gjdx = 0 for j = 1,2. Substituting (58)

for A(ν) into (64), yields

k∗(t) = D

λ∗
0

c0e
−λ∗

0Dt∫
Ω0

[Gλ∗
0
(x;0)]2dx

. (65)

The integral appearing in (65) is evaluated in Appendix 2 with the result

∫
Ω0

G2
λ∗

0
dx ∼ 1

|Ω0|λ∗2
0

(1 + λ∗2
0 A1 + λ∗3

0 A2),
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where the functions A1 ≡ |Ω0|G2(0;0) and A2 are given by (97) and (98), respectively.
Thus, we get the final result

k∗(t) = c0|Ω0|Dλ∗
0

1 + λ∗2
0 A1 + λ∗3

0 A2
e−λ∗

0Dt (66)

which should be compared with (47) for k(t).

4 Numerical Simulations

In this section, we compare the reaction rates obtained from the three-term expansion (47)
and from the infinite logarithmic expansion (66) with the results from the direct integration
of the diffusion equation (4) on the domain Ωδ using the Partial Differential Equation Tool-
box of Matlab [17]. For the numerical simulations, we rescale all lengths by the length scale
L of the cylindrical surface. In rescaled units the surface area and the gauge function ν(δ)

become

|Ωs
0 | =

4πR

L
, ν = 1

log(L/δ)
.

In the previous section it was shown that the reaction rate decays asymptotically in time
as a single exponential function of the form

k(t) = Ae−λt . (67)

Two different expressions for A and λ were derived. For the three-term expansion (47),
A ≡ A(3) and λ ≡ λ(3) are given by

A(3) = c0L
2|Ωs

0 |λ(3)

(
1 − 4π2ν2

|Ωs
0 |

G2(0;0)

)
,

λ(3) = 2πνD

|Ωs
0 |L2

(
1 − 2πνR1(0;0) + (2πν)2

(
[R1(0;0)]2 − G2(0;0)

|Ωs
0 |

))
.

(68)

In contrast, for the infinite logarithmic expansion (66), we set A ≡ A∗ and λ ≡ λ∗, where

A∗ = c0L
2|Ωs

0 |λ∗

(1 + λ∗2
0 A1 + λ∗3

0 A2)
, λ∗ = D

L2
λ∗

0. (69)

Here, λ∗
0 is given by (62). The functions R1(0;0), G2(0;0), A1 and A2 appearing above

depend only on the aspect ratio L/R of the cylindrical surface. They are given by (91), (85),
(97) and (98), respectively. All of these functions contain infinite series, e.g.

G2(0;0) = 1

4π

(
1

45

L

R
+ R

L

∞∑
n=1

1

n2 sinh2( L
R
n)

+ R2

L2

∞∑
n=1

coth( L
R
n)

n3

)
. (70)

Numerical evaluation of these infinite sums shows that in the case of large aspect ratios
L/R � 1 their contribution can be neglected, but for moderate aspect ratios such as L/R ∼ 5
they contribute finite values. Thus, for numerical evaluation of these functions, the first term
of each infinite series is retained, e.g. G2(0;0) is approximated by

G2(0;0) ≈ 1

4π

(
1

45

L

R
+ R

L

1

sinh2( L
R
)

+ R2

L2
coth

(
L

R

))
.
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Fig. 2 Fit of a linear function to
the logarithm of the reaction rate
obtained from numerical
simulations for L/R = 5 with
L = 2.5 µm, R = 0.5 µm,
δ = 0.05 µm and
λsim = 0.0376 s−1. Other
parameters as in Table 1

As an application of our results, we consider the diffusion of IP3R receptor ion channels
on the membrane of the endoplasmic reticulum which forms a tubular network. The para-
meters are chosen as follows: The area of a tube is kept fixed at |Ω0| = 5π µm2 while the
aspect ratio L/R is varied in the range 5 ≤ L/R ≤ 80 corresponding to 2.5 µm ≤ L ≤ 10 µm
and 0.5 µm ≥ R ≥ 0.125 µm. In this way, we can study the influence of the aspect ratio, i.e.
the particular geometrical shape of the membrane, on the reaction rate of small diffusing
molecules on its surface. The radius δ of an IP3R receptor molecule is about 10 nm. The
diffusion coefficient has been reported in the range D = 0.02 . . .0.3 µm2 s−1 [6, 8]. To test
the validity of our approximations in (68) and (69) we also choose larger values of δ until
substantial deviations from the numerical results are observed.

In the simulations we have set the initial condition to c0 = 1. The simulations were con-
tinued for more than 100 seconds after the asymptotic regime had been reached. In general,
the asymptotic regime begins when the initial perturbation, caused by the boundary layer,
reaches the boundary of the cylindrical surface at x = ±L. In our simulations we have ob-
served that the asymptotic regime was reached on a time scale of order L2/4D which is the
time scale of free diffusion in a (quasi-) one-dimensional space. Subsequently, the reaction
rate decayed according to the exponential law (67).

The reaction rate was calculated from the flux to the absorbing boundary for each time
step (every second). Subsequently, we fitted a simple linear function to the logarithm of
the reaction rate from which the amplitude and the decay rate could be easily extracted
according to (67). Two examples, corresponding to different aspect ratios and molecule
sizes, are shown in Fig. 2 and Fig. 3 where the data points (dots) obtained from numerical
simulations are plotted together with the linear fit (solid line). For a better visibility only
every third data point is plotted. Note, that in the case L/R = 80, the asymptotic regime is
reached after approximately 80 seconds (cf. Fig. 3) in agreement with the estimate given
above.

The results of our simulations for two different aspect ratios L/R and three different
molecule sizes δ are compiled in Table 1. This table also contains the theoretical values
according to (68) and (69). As expected, if the aspect ratio is not too large, the three-term
expansion (A(3), λ(3)) and the infinite logarithmic expansion (A∗, λ∗) give equal results, al-
though A∗ is always closer to the value obtained from the full numerical computations than
is A(3). However, for large aspect ratios and only moderately small values of δ the three-
term expansion compares very poorly with full numerical results. In contrast, the infinite
logarithmic expansion, which is intrinsically non-perturbative in character, shows excellent
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Fig. 3 Fit of a linear function to
the logarithm of the reaction rate
obtained from numerical
simulations for L/R = 80 with
L = 10 µm, R = 0.125 µm,
δ = 0.1 µm and
λsim = 0.0075 s−1. Other
parameters as in Table 1

Table 1 Comparison between the theoretically calculated reaction rates (68) and (69) and that obtained
from numerical simulations for two different aspect ratios of the cylindrical surface L/R and fixed total area
|Ω0| = 5π µm2. Other parameters are: D = 0.3 µm2 s−1, c0 = 1 µm−2

L/R = 80 L/R = 5

δ [µm] 0.01 0.05 0.1 0.01 0.05 0.1

λsim 0.0067 0.0072 0.0075 0.0252 0.0376 0.0478

λ∗ [s−1] 0.0067 0.0073 0.0076 0.0251 0.0376 0.0477

λ(3) 0.0111 0.0203 0.0302 0.0251 0.0376 0.0478

Asim 0.087 0.093 0.095 0.387 0.575 0.721

A∗ [s−1] 0.091 0.096 0.098 0.390 0.578 0.724

A(3) 0.044 <0 <0 0.392 0.583 0.736

agreement with the results from numerical simulations even for large aspect ratios and rela-
tively large molecule sizes.

From (67), the inverse decay rate 1/λ is a measure for the time scale over which the
reaction rate has an appreciable strength. Figure 4 summarizes the dependence of the inverse
decay rates 1/λ(3) and 1/λ∗ on the aspect ratio for a fixed value of the surface area |Ω0| =
5π µm2 and δ = 0.01 µm. This plot shows that for aspect ratios L/R < 20, the three-term
expansion and the infinite logarithmic expansion yield basically identical results. In contrast,
for aspect ratios larger than roughly L/R = 60, the three-term expansion underestimates the
true decay rate. At small aspect ratios of L/R ≈ 3.1 ≈ π , the inverse decay rate exhibits
a minimum showing that the reaction rate attains a maximum value in the case where the
length of the cylindrical membrane approximately equals its circumference. Changing the
radius δ of the diffusing molecules towards higher values, merely shifts the whole curves
downwards, i.e. towards smaller inverse decay rates.

5 Discussion

We have calculated the reaction rate of small diffusing molecules on a cylindrical membrane.
This study was motivated by the observation that IP3R receptor channels form clusters on
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Fig. 4 Dependence of the
inverse decay rates 1/λ(3) (68)
(solid line) and 1/λ∗ (69)
(dashed line) on the aspect ratio
L/R for fixed surface area of the
membrane |Ω0| = 5π µm2.
Other parameters are:
D = 0.3 µm2 s−1, δ = 0.01 µm

the surface of the endoplasmic reticulum during ATP-induced calcium release from the ER.
The ER is a tubular network of small interconnected cylindrical membrane parts. We have
considered the reaction rate on one of the tubes by assuming that the net flux of receptor
molecules across the boundaries between adjacent tubes is zero.

Our main results are (68) and (69), which have been derived using the method of matched
asymptotic expansions. An alternative method, based on introducing pseudo-potential terms,
was used in Ref. [23] to calculate eigenvalue corrections for some related problems. While
(68) is correct up to terms of O(ν4) with ν−1 = logL/δ, (69) is a generic non-perturbative
result which contains all logarithmic corrections to the unperturbed eigenvalue and, there-
fore, should be correct up to transcendentally small terms of order O(δν(δ)). As shown in
Table 1, the agreement of our results with those from numerical simulations is remarkably
good.

The first order term

λ(1) = 2πD

|Ω0|
1

logL/δ
, (71)

in the expression for the decay rate (41) only depends on the total area |Ω0| of the cylindri-
cal surface, but not on the specific geometry. Moreover, such a term can be derived only by
matching the constant solution of the unperturbed problem (12) with the logarithmic singu-
larity near the absorbing hole and thus, it should give the main contribution to the decay rate
of small molecules (with circular cross section) in any bounded two-dimensional domain. In
contrast, the higher order corrections explicitly depend on the aspect ratio L/R and there-
fore take into account the geometry of the membrane which is particularly important in the
case of larger aspect ratios (cf. Table 1).

In the derivation of equations (68) and (69) it has been assumed that the absorbing mole-
cule has a circular cross section and that it is located at the origin of the cylindrical surface.
The first of these restrictions can be easily overcome. The only required modification to the
analysis done in Sect. 3 is to replace the logarithmic gauge function with (cf. Ref. [24])

1

logL/δ
→ 1

logL/(dδ)
, (72)

where d is the logarithmic capacitance [18] depending on the shape of the small absorbing
molecule. For example, in the case of an elliptical cross section, then d = (a + b)/2 where
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a and b are the semi-axes of the ellipse. The second assumption has been made to facilitate
the calculations and should be regarded as a first attempt to estimate the order of magnitude
of the reaction rate on a finite two dimensional domain with the explicit dependence on the
relevant system parameters. Preliminary numerical simulations have shown that the reaction
rate can be significantly reduced if the reaction does not take place in the middle of the
membrane (where x = 0). In biological systems, this can be achieved, for example, by the
presence of anchor proteins located somewhere in the region 0 < x < L which can force the
reaction to occur at a specific site of the membrane surface. The existence of such anchor
proteins is discussed in Refs. [2, 6]. The direct interpretation of our numerical results for
x �= 0 is hampered by the fact that the asymptotic decay of the reaction rate appears to
be multi-exponential. This indicates that the approximation made in (11) using only the
dominant eigenmode ϕδ

0 of the Helmholtz operator is no longer sufficient to describe the
asymptotic behavior in that case.

To derive the reaction rate in (47) and (66) we have assumed no-flux boundary condi-
tions which was motivated by biological considerations. In the original treatment by Smolu-
chowski the concentration of diffusing particles was kept fixed at spatial infinity to ensure a
stationary reaction rate as t → ∞ [21]. A similar treatment in our case would be to keep the
concentration of diffusing channel proteins constant at the boundary of the cylindrical sur-
face at x = ±L. Such a situation might also be of biological relevance. Therefore, we have
considered that problem in Appendix 3 where an asymptotic expansion for the stationary
reaction rate is derived. The result reads

ks = 2πDνc0

1 + νRs

, ν = 1

log 1
δ

, (73)

Rs = L

2R
− log

L

R
− 2

∞∑
n=1

(−1)n log(1 − e−2 L
R

n), (74)

where the function Rs only depends on the aspect ratio L/R of the membrane. Note that this
is also a non-perturbative result similar to the one in (69). It agrees excellently with results
from numerical simulations up to aspect ratios of L/R = 75.

The experiments of Tateishi et al. [22] have shown that clustering of IP3R receptor mole-
cules on the ER membrane is a slow process in the order of tens of seconds. Typically, it
took 50–60 seconds after the start of ATP stimulation in the extracellular domain before
significant cluster formation could be observed. Since there is a certain delay until extra-
cellular stimuli are translated into intracellular responses, the actual time scale of clustering
is smaller than 50–60 s. To compare the experimental results with our calculations we note
that the inverse decay rate λ−1 may serve as a measure of time for which the reaction rate
(67) exhibits an appreciable strength before it decays to zero. The leading effect in the time
scale is set by the ratio between the area |Ω0| of the ER membrane and the diffusion co-
efficient D as well as the size δ of the receptor molecules (cf. (71)). In the case of IP3R
receptor ion channels (δ = 0.01 µm) we find good agreement with experiments (see Fig. 4)
for D = 0.3 µm2 s−1, |Ω0| = 5π µm2 and aspect ratios in the range 5 ≤ L/R ≤ 15 corre-
sponding to 40 s ≤ λ−1 ≤ 50 s (cf. Fig. 4). However, our results are also compatible with
a diffusion coefficient at the lower end of the reported range, e.g. D = 0.06 µm2 s−1, if the
area of the membrane is accordingly reduced to |Ω0| = π µm2. In this case, the aspect ratio
of the membrane would have to be in the range 12 ≤ L/R ≤ 20 to yield the same range of
time scales as for the case |Ω0| = 5π µm2.

In summary, our calculations support the view that receptor clustering on ER membranes
with a moderate aspect ratio L/R ≤ 20 might be a purely diffusion limited process. At the
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same time it indicates that clustering can be faster than measured in the specific experiments
above and therefore may have a role during intracellular Ca2+ oscillations in vivo [4, 5].

Finally, we mention that our results may be useful to estimate the reaction rate of receptor
molecules on other intracellular organelles with a tubular shape such as cilia [7]. Also, the
restriction to the case of simple diffusion in the calculation of the reaction rate is not a severe
restriction. For example, our result can be readily applied to the case where free diffusion
on the membrane is hampered by transient confinement zones such as lipid rafts where
membrane receptor molecules may become trapped for some time before they can escape
these domains and continue to perform free diffusion [3]. Such a process is still described
by diffusion, i.e. it is a random walk between confinement domains, but on a coarse grained
time scale.

Acknowledgements We would like to thank two anonymous reviewers for useful comments on the manu-
script.

Appendix 1: Calculation of R1(0;0) and G2(0;0)

In this appendix we derive the expressions for R1(0;0) and G2(0;0). For this purpose, we
have to solve (30) and (35) with the boundary conditions (5), i.e.

�G1(x;0) = 1

|Ω0| − δ(x), x ∈ Ω0, (75)

and

�G2 = −G1, x ∈ Ω0. (76)

For the following calculations, it will be convenient to measure all lengths in terms of the
length scale L of the cylindrical surface, which is now given by

Ωs
0 :=

{
(x, y) : |x| ≤ 1, |y| ≤ πR

L

}
. (77)

In rescaled units we have |Ωs
0 | = 4πR/L, while the boundary conditions for Gj with j =

1,2 become

∂xGj (±1, y;0) = 0,

Gj

(
x,

πR

L
;0

)
= Gj

(
x,−πR

L
;0

)
,

∂yGj

(
x,

πR

L
;0

)
= ∂yGj

(
x,−πR

L
;0

)
.

(78)

In addition, G1 and G2 satisfy orthogonality relations of the form
∫

Ωs
0

Gj(x;0)dx = 0, j = 1,2. (79)

We look for a Fourier series representation of G1(x;0) on the domain Ωs
0 of (77). For

this purpose, the delta function δ(x) = δ(x)δ(y) is decomposed into Fourier modes as

δ(x)δ(y) =
(

1

2
+

∞∑
m=1

cos(mπx)

)(
L

2πR
+ L

πR

∞∑
n=1

cos

(
nL

R
y

))
.
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Upon inserting this expression into (75), we obtain

�G1(x;0) = − 2

|Ωs
0 |

( ∞∑
m=1

cos(mπx) +
∞∑

n=1

cos

(
nL

R
y

))

− 4

|Ωs
0 |

∞∑
m,n=1

cos(mπx) cos

(
nL

R
y

)
. (80)

This shows that G1 has the following Fourier series representation

G1(x;0) = 2

|Ωs
0 |

(
1

π2

∞∑
m=1

cos(mπx)

m2
+ R2

L2

∞∑
n=1

cos( nL
R

y)

n2

)

+ 2

|Ωs
0 |

∞∑
m,n=1

2 cos(mπx) cos( nL
R

y)

(mπ)2 + ( nL
R

)2
. (81)

It is straightforward to confirm that this solution also satisfies the boundary conditions (78)
as well as the orthogonality condition (79).

The solution G2 to (76) can be calculated in a similar way. The result is

G2(x;0) = 2

|Ωs
0 |

( ∞∑
m=1

cos(mπx)

(πm)4
+

∞∑
n=1

cos( nL
R

y)

( nL
R

)4

)

+ 2

|Ωs
0 |

( ∞∑
m,n=1

2 cos(mπx) cos( nL
R

y)

((mπ)2 + ( nL
R

)2)2

)
. (82)

Now, G2(0,0) is readily evaluated by interchanging the infinite summations in (82) with the
limiting procedure x → 0, since the resulting infinite series are absolutely convergent. As a
result, we get

G2(0,0) = 2

|Ωs
0 |

( ∞∑
m=1

1

(πm)4
+

∞∑
n=1

1

( nL
R

)2
+

∞∑
m,n=1

2

((πm)2 + ( nL
R

)2)2

)
.

Making use of the well-known identities

∞∑
m=1

1

m4
= π4

90
, (83)

∞∑
m=1

1

(m2 + b2)2
= − 1

2b4
+ π2

4b2 sinh2(πb)
+ π

4b3
coth(πb), (84)

we readily obtain

G2(0;0) = 1

4π

(
1

45

L

R
+ R

L

∞∑
n=1

1

n2 sinh2( L
R
n)

+ R2

L2

∞∑
n=1

coth( L
R
n)

n3

)
. (85)

The calculation of R1(0,0) is more difficult, since the double sum in (81) contains the
logarithmic singularity of the Green’s function, which has to be extracted before the limit



398 J Stat Phys (2007) 129: 377–405

x → 0 can be applied. For the single sums in (81) the limit process can be interchanged with
summation since the resulting series is absolutely convergent, e.g.

lim
x→0

∞∑
m=1

cos(mπx)

m2
=

∞∑
m=1

1

m2
= π2

6
. (86)

The double sum will be computed in two steps. First, we perform the sum over ‘m’ using
formula (1.445-2) from [11]

∞∑
k=1

cos kx

k2 + b2
= π

2b

cosh(b(π − x))

sinh(πb)
− 1

2b2
, 0 ≤ x ≤ 2. (87)

Second, the resulting series over ‘n’ can be split into three parts one of which contains the
logarithmic singularity while the other two give finite contributions in the limit x → 0.

The summation over ‘m’ in the double sum of (81) yields

2

π2

∞∑
m=1

cos(mπx)

(m)2 + ( nL
πR

)2
= R

Ln

cosh((1 − |x|) L
R
n)

sinh( L
R
n)

− R2

L2n2
. (88)

Upon using the double angle formula for cosh(x − y), together with

cothx = 1 + 2e−2x

1 − e−2x

and coshx − sinhx = e−x , the term in (88) containing the hyperbolic functions can be writ-
ten as

cosh((1 − |x|) L
R
n)

sinh( L
R
n)

= e− L
R

|x|n + 2e−2 L
R

n

1 − e−2 L
R

n
cosh

(
L

R
nx

)
. (89)

The subsequent summation over ‘n’, given by

∞∑
n,m=1

2 cos(mπx) cos( nL
R

y)

(mπ)2 + ( nL
R

)2

= R

L

∞∑
n=1

e− L
R

|x|n cos( L
R
ny)

n
+ R

L

∞∑
n=1

1

n

2e−2 L
R

n

1 − e−2 L
R

n
cosh

(
L

R
nx

)
cos

(
L

R
ny

)

− R2

L2

∞∑
n=1

cos( L
R
ny)

n2
, (90)

shows that the last sum precisely cancels the second (single) sum in (81). The first sum in
(90) is readily evaluated when the cosine function is written as a sum of two exponentials
and the power series expansion of the logarithm

∑∞
k=1 k−1zk = − log(1 − z) for |z| < 1 is

used. In this way, we get

R

L

∞∑
n=1

cos( nL
R

y)

n
e− |x|L

R
n = − R

2L
log{(1 − e− L

R
(|x|+iy))(1 − e− L

R
(|x|−iy))}.
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The small argument expansion of the exponential functions then yields

− R

2L
lim
x→0

log{(1 − e− L
R

(|x|+iy))(1 − e− L
R

(|x|−iy))}

= − R

2L
lim
x→0

log

{(
L2

R2
(x2 + y2)

)
(1 −O(|x|, y2))

}

= −R

L
log

L

R
− R

L
log

√
x2 + y2.

It remains to evaluate the second sum (90) in the limit x → 0. In the calculation, a series of
Lambert type [14] is obtained

∞∑
n=1

1

n

qn

1 − qn
, q ≡ e−2 L

R < 1,

which may be rewritten as

∞∑
n=1

qn

n(1 − qn)
=

∞∑
n=1

qn

n

∞∑
m=0

(qn)m =
∞∑

m=0

∞∑
n=1

(qm+1)n

n
= −

∞∑
m=1

log(1 − qm).

Since the Lambert series is absolutely convergent [14], the two limiting processes can, again,
be interchanged yielding

lim
x→0

R

L

∞∑
n=1

1

n

2e−2 L
R

n

1 − e−2 L
R

n
cosh

(
L

R
nx

)
cos

(
L

R
ny

)

= R

L

∞∑
n=1

1

n

2e−2 L
R

n

1 − e−2 L
R

n
= −2

R

L

∞∑
n=1

log(1 − e−2 L
R

n).

In summary, we obtain upon also recalling (86), that for x → 0 the Green’s function
G1(x;0) behaves like

lim
x→0

G1(x;0) = 2L

4πR

(
1

π2

π2

6
− R

L
log

L

R
− R

L
log

√
x2 + y2

)

+ 2L

4πR

(
−2

R

L

∞∑
n=1

log(1 − e−2 L
R

n)

)
,

= − 1

2π
log |x| + L

12πR
− 1

2π
log

L

R
− 1

π

∞∑
n=1

log(1 − e−2 L
R

n).

From this expression the regular part of the Green’s function given by (31) can be read off
as

R1(0;0) = 1

2π

(
L

6R
− log

(
L

R

)
− 2

∞∑
n=1

log(1 − e−2nL/R)

)
. (91)

Note that R1(0;0) depends only on the aspect ratio L/R. In particular, for large aspect
ratios one can safely approximate R1(0;0) by the first two terms, and neglect the infinite sum
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of logarithmic corrections. As a remark, if we had interchanged the order of summation in
the double sum in (81), and had instead begun with the summation over ‘n’, while following
the remainder of the calculation above, we would have obtained a different representation
of the regular part R1(0;0) of the Green’s function in (81), namely

R1(0;0) = 1

2π

(
π2R

6L
− logπ − 2

∞∑
n=1

log(1 − e−2π2nR/L)

)
. (92)

One may readily show that both expressions yield the same numerical value, but with
a different speed of convergence. While (91) converges rapidly for L/R � 1, the other
representation performs better if L/R � π2. Hence, there is an overlap region where both
expressions are equally good (or bad). For example, if L/R = 5 only one term of the sum in
(91) and three terms of the sum in (92) are needed to give the same result with an accuracy
of 6 digits. In contrast, if L/R = 25 then twenty terms of the sum in (92) and no term from
the sum in (91) are needed to achieve the same accuracy.

Appendix 2: Calculation of the Integral Appearing in (65)

In this section, we will use the Fourier series representations for G1 and G2, given by (81)
and (82), respectively, to calculate the integral appearing in (65) for the reaction rate k∗(t):

∫
Ωs

0

[Gλ∗(x;0)]2dx =
∫

Ωs
0

(
− 1

|Ωs
0 |λ∗

0

+ G1(x;0) + λ∗
0G2(x;0)

)2

dx. (93)

The main contribution arises from the constant term, i.e.

∫
Ωs

0

1

|Ωs
0 |2λ∗2

0

dx = 1

|Ωs
0 |λ∗2

0

. (94)

Due to the orthogonality relations (79), the terms linear in G1 and G2 vanish. Therefore, it
remains to evaluate

∫
Ωs

0

(G1 + λ∗
0G2)

2dx ∼
∫

Ωs
0

(G2
1 + 2λ∗

0G1G2)dx, (95)

where we have again neglected terms quadratic in λ∗
0. Upon recalling the orthogonality

relations of the trigonometric functions

∫ 1

−1
cos(πmx)dx =

∫ πR
L

− πR
L

cos

(
nL

R
y

)
dy = 0,

∫ 1

−1
cos(πmx) cos(πnx)dx = δmn,

∫ πR
L

− πR
L

cos

(
mL

R
y

)
cos

(
nL

R
y

)
dy = πR

L
δmn,
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we obtain for the first term in (95) that

∫
Ωs

0

G2
1dx = 4

|Ωs
0 |2

(
|Ωs

0 |
2π4

∞∑
m=1

1

m4
+ |Ωs

0 |
2

R4

L4

∞∑
m=1

1

m4

)
(96)

+ 4

|Ωs
0 |2

(
|Ωs

0 |
π4

∞∑
m,n=1

1

(m2 + ( nL
πR

)2)2

)

= 1

|Ωs
0 |

(
1

45
+ R2

L2

∞∑
n=1

1

n2 sinh2( L
R
n)

+ R3

L3

∞∑
n=1

coth( L
R
n)

n3

)

≡ A1

|Ωs
0 |

(97)

while the second integral becomes

2
∫

Ωs
0

G1G2dx = 1

|Ωs
0 |

(
4

945
+ 3

2

R4

L4

∞∑
n=1

1

n4 sinh2( L
R
n)

+ 3

2

R5

L5

∞∑
n=1

coth( L
R
n)

n5

)

+ 1

|Ωs
0 |

(
R3

L3

∞∑
n=1

coth( L
R
n)

n3 sinh2( L
R
n)

)

≡ A2

|Ωs
0 |

. (98)

Here, we have used

∞∑
m=1

1

m6
= π6

945
, (99)

together with (84) and formula (6.1.174) from [12]

∞∑
m=1

1

(m2 + b2)3
= − 1

2b6
+ 3π

16b5
coth(πb) + 3π2

16b4 sinh2(πb)

+ π3 coth(πb)

8b3 sinh2(πb)
.

In summary, this analysis shows that

∫
Ωs

0

[Gλ∗(x;0)]2dx ∼ 1

|Ωs
0 |λ∗2

0

(1 + λ∗2
0 A1 + λ∗3

0 A2). (100)

Appendix 3: Stationary Reaction Rate

We calculate the stationary reaction rate of small diffusing molecules on a cylindrical surface
which is reached after sufficiently long time when the initial concentration is kept fixed at
the boundary of the cylindrical surface. The calculation is very similar to the case of no-flux
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boundary conditions discussed at length in Sect. 3. Therefore, we give here only the main
steps of the derivation.

We look for the stationary solution of the diffusion equation (4) in the scaled domain Ωs
0

(see (77)), i.e. we consider the following BVP

�c = 0, c(x) = 0 at |x| = δ,

c(±1, y) = c0,
(101)

and periodic boundary conditions in the y-direction. Here, c0 is the initial concentration
which is kept fixed at the boundary of the cylinder at x = ±1. To solve this BVP we intro-
duce asymptotic expansions as in Sect. 3.5

cout = Φ(x, ν) + σ(δ)Ψ (x), |x| ∼ O(1), (102)

cin = νA(ν) log |y| +O(δ), |y| = |x|/δ = O(1), (103)

where σ � νk for any k ≥ 1 and ν = −1/ log δ. The function Φ(x) contains all logarithmic
corrections to the solution of the unperturbed problem while A(ν) has to be found from
matching the inner and outer expansions. Rewriting the inner expansion cin in terms of
outer variables yields the matching condition

lim
x→0

Φ(x, ν) = A(ν) + νA(ν) log |x|. (104)

This reveals that Φ has a logarithmic singularity at the origin. Using the outer expansion
cout in the BVP (101) shows that Φ has to be a solution of the equation

�Φ = 2πνA(ν)δ(x) (105)

where we have added a delta function to account for the correct singularity behavior in a
similar way as in Sect. 3. The solution to this equation can be decomposed as Φ(x, ν) =
Φ0(x) − 2πνA(ν)G(x;0) where Φ0 is a solution of the unperturbed problem

�Φ0 = 0, Φ0(±1, y) = c0 (106)

and G is a Green’s function satisfying

�G = −δ(x), G(±1, y) = 0 (107)

together with periodic boundary conditions in the y-direction. From the singularity behavior
of the Green’s function

lim
x→0

G = − 1

2π
(log |x| − R0), (108)

and the matching condition equation (104), the function A(ν) is determined by

lim
x→0

Φ(x, ν) = A(ν) + νA(ν) log |x|
!= Φ0(0) + 2πνA(ν)

1

2π
(log |x| − R0).

Solving for A(ν) yields

A(ν) = Φ0(0)

1 + νR0
, (109)
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where R0 is the regular part of the Green’s function G. The stationary reaction rate ks is then
calculated as the flux towards the small absorbing hole at |y| = 1 (cf. (1)). Using the inner
expansion in (103) we obtain

ks = 2πDν
Φ0(0)

1 + νR0
. (110)

The constant Φ0(0) is determined by the solution to the unperturbed problem (106) which
is simply given by Φ0 ≡ c0. The Green’s function in (107) can be found in a similar way as
in Appendix 1 using the Fourier representation of the δ-function (with |Ωs

0 | = 4πR/L)

δ(x) = 1

|Ωs
0 |

(
1 + 2

∞∑
m=1

cos[mπx] + 2
∞∑

n=1

cos

[
nL

R
y

])

+ 4

|Ωs
0 |

( ∞∑
m,n=1

cos[mπx] cos

[
nL

R
y

])
.

A particular solution of (107) is given by

G = 1

|Ωs
0 |

(
−x2

2
+ 2

π2

∞∑
m=1

cos[mπx]
m2

+ 2
R2

L2

∞∑
n=1

cos[ nL
R

y]
n2

)

+ 4

|Ωs
0 |

∞∑
m,n=1

cos[mπx] cos[ nL
R

y]
(mπ)2 + ( nL

R
)2

.

While this function is periodic in the y-direction it does not fulfill the boundary condition in
(107). Instead, we obtain

lim
x→±1

G = 1

|Ωs
0 |

(
−1

2
− 1

6
+ 2

R

L

∞∑
n=1

cos[ nL
R

y]
n sinh[ nL

R
]

)
.

Thus, we have to find a harmonic function H satisfying

lim
x→±1

H = 1

|Ωs
0 |

(
2

3
− 2

R

L

∞∑
n=1

cos[ nL
R

y]
n sinh[ nL

R
]

)
,

such that limx→±1(G + H) = 0. This function is given by

H = 1

|Ωs
0 |

(
2

3
− 2

R

L

∞∑
n=1

cosh[ nL
R

x] cos[ nL
R

y]
n cosh[ nL

R
] sinh[ nL

R
]

)
,

and the general solution to (107) reads

G = 1

|Ωs
0 |

(
−x2

2
+ 2

3
+ 2

π2

∞∑
m=1

cos[mπx]
m2

+ 2
R2

L2

∞∑
n=1

cos[ nL
R

y]
n2

)

+ 1

|Ωs
0 |

(
4

∞∑
m,n=1

cos[mπx] cos[ nL
R

y]
(mπ)2 + ( nL

R
)2

− 4
R

L

∞∑
n=1

cosh[ nL
R

x] cos[ nL
R

y]
n sinh[2 nL

R
]

)
.
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In the limit x → 0 the Green’s function G behaves like

lim
x→0

G = L

4πR

(
1 − 2

R

L
log

L

R
− 2

R

L
log |x| − 4

R

L

∞∑
n=1

(−1)n log(1 − e−2 L
R

n)

)
,

which shows that its regular part appearing in (110) is given by

R0 = L

2R
− log

L

R
− 2

∞∑
n=1

(−1)n log(1 − e−2 L
R

n). (111)

In deriving this equation we made use of (90) and

∞∑
n=1

1

n sinh[2 nL
R

] = 2
∞∑

n=1

1

n

e−2 L
R

n

1 − e−4 L
R

n
= 2

∞∑
m=0

∞∑
n=1

(e−(2m+1)2 L
R )n

n

= −2
∞∑

m=0

log(1 − e−(2m+1)2 L
R ).
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